Integration: Groq
Use open Language Models served by Groq
Table of Contents
Overview
Groq is an AI company that has developed Language Processing Unit (LPU), a high-performance engine designed for fast inference of Large Language Models.
To start using Groq, sign up for an API key here. This will give you access to Groq API, which offers rapid inference of open Language Models like Mixtral and Llama 3.
Usage
Groq API is OpenAI compatible, making it easy to use in Haystack via OpenAI Generators.
Using Generator
Here’s an example of using Mixtral served via Groq to perform question answering on a web page.
You need to set the environment variable GROQ_API_KEY
and choose a
compatible model.
from haystack import Pipeline
from haystack.utils import Secret
from haystack.components.fetchers import LinkContentFetcher
from haystack.components.converters import HTMLToDocument
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
fetcher = LinkContentFetcher()
converter = HTMLToDocument()
prompt_template = """
According to the contents of this website:
{% for document in documents %}
{{document.content}}
{% endfor %}
Answer the given question: {{query}}
Answer:
"""
prompt_builder = PromptBuilder(template=prompt_template)
llm = OpenAIGenerator(
api_key=Secret.from_env_var("GROQ_API_KEY"),
api_base_url="https://api.groq.com/openai/v1",
model="mixtral-8x7b-32768",
generation_kwargs = {"max_tokens": 512}
)
pipeline = Pipeline()
pipeline.add_component("fetcher", fetcher)
pipeline.add_component("converter", converter)
pipeline.add_component("prompt", prompt_builder)
pipeline.add_component("llm", llm)
pipeline.connect("fetcher.streams", "converter.sources")
pipeline.connect("converter.documents", "prompt.documents")
pipeline.connect("prompt.prompt", "llm.prompt")
result = pipeline.run({"fetcher": {"urls": ["https://wow.groq.com/why-groq/"]},
"prompt": {"query": "Why should I use Groq for serving LLMs?"}})
print(result["llm"]["replies"][0])
Using ChatGenerator
See an example of engaging in a multi-turn conversation with Llama 3.
You need to set the environment variable GROQ_API_KEY
and choose a
compatible model.
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack.utils import Secret
generator = OpenAIChatGenerator(
api_key=Secret.from_env_var("GROQ_API_KEY"),
api_base_url="https://api.groq.com/openai/v1",
model="llama3-8b-8192",
generation_kwargs = {"max_tokens": 512}
)
messages = []
while True:
msg = input("Enter your message or Q to exit\n๐ง ")
if msg=="Q":
break
messages.append(ChatMessage.from_user(msg))
response = generator.run(messages=messages)
assistant_resp = response['replies'][0]
print("๐ค "+assistant_resp.content)
messages.append(assistant_resp)